
CodeCamp | SF2017

C bindings
tapping a bigger ecosystem



What are they?_

● Allows use of code exported in compilation units
● Usually compiled from C source files
● Low-level bindings
● https://crystal-lang.org/docs/syntax_and_semantics/c_bindings/

https://crystal-lang.org/docs/syntax_and_semantics/c_bindings/
https://crystal-lang.org/docs/syntax_and_semantics/c_bindings/


Compilation and linking process_

● What is a compiler?
● What is a linker?
● Compilation unit
● Object files
● Libraries: static vs. shared libraries
● The C runtime



Example use case: embedding Lua_

● What is Lua? http://www.lua.org/ 
● Why embed Lua?
● Lua VM and execution model
● The Lua stack

http://www.lua.org/


Discovering what to bind_

● Library documentation
○ http://www.lua.org/manual/5.2/manual.html#4 

● C header files
○ https://github.com/lua/lua/blob/v5-2/lua.h 

● Exported library symbols
○ nm /usr/local/lib/liblua.dylib

● ABI specifications
● Calling conventions
● Name mangling

http://www.lua.org/manual/5.2/manual.html#4
http://www.lua.org/manual/5.2/manual.html#4
https://github.com/lua/lua/blob/v5-2/lua.h
https://github.com/lua/lua/blob/v5-2/lua.h


Binding definitions_

● lib declarations
● fun

● struct, enum and union
● type and alias



Conventions_

● Naming libraries
● Naming function definitions
● Higher-level abstractions



Type mapping_

● How are Crystal objects laid out in memory
● Relation to C types
● to_unsafe

● out parameters
● Procs and callbacks
● Closures



Caveat: memory handling_

● Dealing with separate/different memory handling models
● Interaction with Crystal’s GC
● Mixing allocation models
● Avoiding memory or resource leaks
● Finalizers
● Avoiding premature deallocations



Caveat: threading and I/O_

● Mixing concurrency models
● Mixing execution models: asynchronous, synchronous, evented
● More in the Concurrency & Processes segment



Automatic generation of bindings_

● Available tools for boilerplate code generation
● crystal_lib: https://github.com/crystal-lang/crystal_lib 
● Limitations

https://github.com/crystal-lang/crystal_lib


Higher level abstractions_

● Leverage Crystal language features to provide better abstractions
● Preferably without losing performance
● Wrapper classes
● Boxing
● Example: https://github.com/veelenga/lua.cr

https://github.com/veelenga/lua.cr


We are Manas.
We build unconventional software_

https://manas.tech


