
CodeCamp | SF2017

Concurrency and processes
Doing more than one thing at a time

Concurrency Model_

● Inspirations: Go and Erlang
● Cooperative scheduling (Fiber)
● Event loop (IO, timers)
● Message channels (CSP)

A Crystal process_

Fiber
#1

Fiber
#2

Fiber
#3

Fiber
#...

Runtime
Scheduler

Event Loop

Channels

GC

Files
Sockets

Pipes
Signals

Timers

Fiber_

● Cooperative
● Lightweight (from 4KB)
● 32 bit arch.: max 512 fibers
● 64 bit arch.: 2^41 (~2 trillion)

Fibers_

spawn do
 # ...
end

Creating a new fiber

Event Loop_

Event Loop Fiber

libevent

epoll, kqueue, etc...

Operating System

Scheduling_

spawn do
 # ...
 @socket.read(...)
 # ...
end

spawn do
 # ...
 sleep 5
 # ...
end

ch = Channel(Int32).new

spawn do
 ch.send 123
end

spawn do
 x = ch.receive
end

Channels_

Unbuffered channel

ch = Channel(Int32).new(10)

spawn do
 ch.send 123
end

spawn do
 x = ch.receive
end

Channels_

Buffered channel

select
when x = ch1.receive
 # ...
when x = ch2.receive
 # ...
when ch3.send(123)
 # ...
end

Waiting on several channels_

ch = Channel(Nil).new

spawn do
 # ...
 ch.send nil
end

ch.receive

Patterns_

Synchronizing

ch = Channel(Nil).new

10.times do
 spawn do
 # ...
 ch.send nil
 end
end

10.times { ch.receive }

Patterns_

Synchronizing

ch = Channel(Job).new

10.times do
 spawn do
 loop do
 execute_job(ch.receive)
 end
 end
end

Patterns_

Job queue

Higher level constructs_

d = delay(1) { Process.kill(Signal::KILL, Process.pid) }

... long operations ...

d.cancel

Higher level constructs_

f = future { HTTP::Client.get "http://..." }

... other actions ...

response = f.get

Higher level constructs_

l = lazy { HTTP::Client.get "http://..." }

spawn { l.get }

spawn { l.get }

Higher level constructs_

r1, r2 = parallel(

 HTTP::Client.get("http://www.google.com"),

 HTTP::Client.get("http://www.bing.com")

)

Playing with fibers and channels

Caveat: CPU-bound processes_

● How to screw a cooperative scheduling system
● Avoiding long-running tasks

Spawning new processes_

● fork/exec
● Awaiting for completion

Inter Process Communication_

● Signals
● Pipes
● Sockets
● Files

Multi-thread support_

● What about regular threads?
● Support status
● What to expect
● New problems/caveats it introduces

We are Manas.
We build unconventional software_

https://manas.tech

